THE RESOLUTION OF SOME RACEMIC a-OLEFINES BY STEREO-SELECTIVE COMPLEXATION.

R.Lazzaroni, P.Salvadori and P.Pino

Istituto di Chimica Organica Industriale, Università di Pisa -Centro Nazionale di Chimica delle Macromolecole del C.N.R. - Sezione IV - Pisa -(ITALY)

(Received in UK 7 February 1968; accepted for publication 21 February 1968)

The resolution of cycloolefines using platinum complexes $\binom{(1)(2)}{2}$ as well as diisopinocanphenylborane has already been achieved, but no resolution of aliphatic racemic α -olefines has been described up to now in literature.

We have observed that such a type of resolution occurs readily using both <u>cis-</u> and <u>trans-dicloro[(S)-a-phenylethylamine][olefine]platinum complexes at least in the a-olefines in which the asymmetric carbon atom is in a or β position to the double bond.</u>

In fact, by reacting <u>cis-</u> or <u>trans-dicloro[(S)-a-phenylethylamine][ethylene]</u> platinum with a solution of a racemic a-olefine, the known⁽⁴⁾ reversible reaction 1 occurs; when an excess of olefine is used the recovered a-olefine is optically active and from its optical activity, the optical purity of the a-olefine bound in the complex present in solution can be evaluated.

1)
$$Cl_2[(S)-C_6H_5-\tilde{C}H(CH_3)NH_2][C_2H_4]Pt + olefine = I$$

$$= \operatorname{Cl}_{2}[(S)-C_{6}H_{5}-CH(CH_{3})NH_{2}][olefine]Pt + C_{2}H_{4}$$
II

As shown in Table 1 operating in solution without crystallizing the complexes, the enantiomer of the a-olefine whose chirality is the same as that of the amine present in the complex, is preferentially bound to the metal atom of the <u>cis</u> platinum complexes; the opposite holds when using the <u>trans</u> platinum complexes.

TABLE 1

Stereoselective Complexation of Racemic a-olefines in solution using cis- or trans--dichloro[(S)-a-phenylethylamine][olefine] platinum Complexes.

a-olefine		Pt complex		recovered a-olefine			a-olefine bound in the dissolved complexes		
Туре	m.mo- les	type	m.mo les	m.mo- les	[a] ²⁵ D	chi ra- lity	chira- lity	optical purity %	
3-methyl-1-pentene	5.0	<u>cis</u>	1.0	3.8	-0.37	R ^{a)}	s ^{a)}	4	
3,7-dimethyl-1-octene	5.0	cis	1.0	3.7	-0.33	_R Ъ)	s ^{b)}	3	
4-methyl-1-hexene	11.4	cis	3.8	6.7	+0.03	R c)	s ^{c)}	1	
3-methyl-1-pentene	10.5	trans	1.5	7.9	+0.11	s ^{a)}	R ^{a)}	2	
3,7-dimethyl-1-octene	10.5	trans	1.5	7.4	+0.11	s ^{ъ)}	_R Ъ)	5	

a) P.Pino, L.Lardicci and L.Centoni, J.Org.Chem., 1399 (1959).

b) F.Ciardelli and P.Pino, <u>Ric.Sci.</u>, <u>34(IIA)</u>, 694 (1964).
c) P.Pino, L.Lardicci and L.Centoni, <u>Gazz.Chim.Ital.</u>, <u>91</u>, 428 (1961).

The optical purity of the complexed olefine can be greatly increased by crystallization of the complex obtained from the cis form of the complex I. In the Table 2 the melting point and analyses of the crystalline complexes are reported.

a-olefine	optical purity of the complexed olefine %	cis Pt complexes (II)							
		M.p. °C		Analyses (%)					
			Formula	Calcd.		Found			
				C	H	C	н		
3-methyl-1-pentene	24	140-141	C ₁₄ ^H 23 ^{NCl} 2 ^{Pt}	35.66	4.92	35.80	4.87		
3-methyl-1-hexene	36	151-152	C ₁₅ H ₂₅ NCl ₂ Pt ^{x)}	37.11	5.19	36.98	5.11		
3,4-dimethyl-1-pentene	93	165–166	C15H25NCl2Pt	37.11	5.19	37.15	5.09		
4-methyl-1-hexene	2	112-114	C ₁₅ H ₂₅ NCl ₂ Pt	37.11	5.19	37.27	5.16		
5-methyl-1-heptene	\sim 0	122-124	$C_{16}H_{27}NCl_2Pt$	38.47	5.45	38.60	5.29		
3,7-dimethyl-1-octene	42	125-126	C ₁₈ H ₃₁ NCl ₂ Pt	40.98	5.92	40.83	5.83		

TABLE 2

x) Cl calcd.: 14.61, found : 14.80

No.21

The optical purity obtained by a single crystallization (Table 3) is strongly dependent on the structure of the a-olefine and, in the case of 3,4-dimethyl-1pentene, the optical purity of the complexed olefine, after one crystallization, was as high as 93%. No definite relationship seems to exist between chirality of the amine present in the solid complex and chirality of the a-olefine complexed preferentially.

TABLE 3

Resolution of Racemic a-olefines by Cristallization of <u>cis</u>-dichloro[(S)-a-phenyl--ethylamine][olefine] platinum Complexes.

a-olefine	<u>cis</u> P	t complex	olefine recovered from the Pt complex				
Туре	m.mo- les	m.mo- les	crystalli- zed from	m.mo- les	[a] ²⁵ D	chira- lity	optical purity %
с _{2^H5-CH-CH=CH₂ CH₃}	5	1.0	methanol	0.62	- 9.0	_R x)	24
CH ₃ -(CH ₂) ₂ -CH-CH=CH ₂ CH ₃	50	10.0	acetone	8.0	+10.4	s ^{a)}	36
$CH_{3} - CH_{CH_{2}} CH_{3} - CH_{2} CH_{2} CH_{3} CH_{3} CH_{3} CH_{3}$	46	9.2	acetone	7.5	+ 6.9	s ^{x)}	42
$CH_3-CH CHCH=CH_2$ $CH_3 CH_3$	40	10.0	methanol	6.5	+41.0	R ^{b)}	93
CH ₃ -CH ₂ -CH-CH ₂ -CH=CH ₂ CH ₃	4.4	1.1	methanol	0.81	+ 0.06	R x)	2
сн ₃ -сн ₂ -сн-(сн ₂) ₂ -сн=сн ₂ сн ₃	20.0	5.0	acetone	4.7	~ 0	-	~ 0

x) See Table 1

a) As shown by hydrogenation with H₂ in the presence of Raney Nickel of the (+) enantiomer to (-)(R)-3-methylhexane [L.Lardicci, P.Salvadori and P.Pino, <u>Ann.Chim., 52</u>, 652 (1962)].
 b) As shown by hydrogenation with H₂ in the presence of Raney Nickel of the (+)

b) As shown by hydrogenation with H₂ in the presence of Raney Nickel of the (+) enantiomer to (+)(R)-2,3-dimethylpentane [L.Lardicci, R.Rossi, S.Pucci, M.Aglietto, C.Botteghi and P.Pino, <u>Chim.Ind.</u> (Milan) in press.]. The present method of resolution is particularly suitable from the preparative point of view as, by simple treatment with ethylene (20-40 atm.) of a solution of the complexes in CH_2Cl_2 or CH_3OH , it is possible to recover quantitatively the resolved olefine as well as the complex I which is sparingly soluble in the above solvents.

REFERENCES

- 1. A.C.Cope, C.R.Ganellin, H.W.Johnson, Jr., T.V.Van Auken and J.S.Winkler, J.Am.Chem.Soc., <u>85</u>, 3276 (1963).
- 2. A.Panunzi and G.Paiaro, J.Am.Chem.Soc., 88, 4843 (1966).
- 3. H.C.Brown, N.R.Ayyangar and G.Zweifel, J.Am.Chem.Soc., 86, 397 (1964).
- 4. R.Cramer, <u>Inorg.Chem.</u>, <u>4</u>, 445 (1965).